Bayesian hierarchical modeling of longitudinal glaucomatous visual fields using a two-stage approach.

نویسندگان

  • Susan R Bryan
  • Paul H C Eilers
  • Joost van Rosmalen
  • Dimitris Rizopoulos
  • Koenraad A Vermeer
  • Hans G Lemij
  • Emmanuel M E H Lesaffre
چکیده

The Bayesian approach has become increasingly popular because it allows to fit quite complex models to data via Markov chain Monte Carlo sampling. However, it is also recognized nowadays that Markov chain Monte Carlo sampling can become computationally prohibitive when applied to a large data set. We encountered serious computational difficulties when fitting an hierarchical model to longitudinal glaucoma data of patients who participate in an ongoing Dutch study. To overcome this problem, we applied and extended a recently proposed two-stage approach to model these data. Glaucoma is one of the leading causes of blindness in the world. In order to detect deterioration at an early stage, a model for predicting visual fields (VFs) in time is needed. Hence, the true underlying VF progression can be determined, and treatment strategies can then be optimized to prevent further VF loss. Because we were unable to fit these data with the classical one-stage approach upon which the current popular Bayesian software is based, we made use of the two-stage Bayesian approach. The considered hierarchical longitudinal model involves estimating a large number of random effects and deals with censoring and high measurement variability. In addition, we extended the approach with tools for model evaluation. Copyright © 2017 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data

A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...

متن کامل

Bayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models

Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...

متن کامل

Investigating the effects of glaucomatous (POAG) damage on the mVEP parameters

Introduction: Glaucoma is considered as a major cause of irreversible vision loss, worldwide. Glaucoma includes a diverse ophthalmopathies characterized by attenuating the neural and connective tissue segments and eventually progression of specific patterns of visual dysfunction. Currently, perimetry is known as the most accurate diagnostic method in glaucoma and its follow up...

متن کامل

Bayesian Hierarchical Modeling for Categorical Longitudinal Data from Sedation Measurements

We investigate a Bayesian hierarchical model for the analysis of categorical longitudinal data from sedation measurement for Magnetic Resonance Imaging (MRI) and Computerized Tomography (CT). Data for each patient is observed at different time points within the time up to 60 min. A model for the sedation level of patients is developed by introducing, at the first stage of a hierarchical model, ...

متن کامل

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics in medicine

دوره 36 11  شماره 

صفحات  -

تاریخ انتشار 2017